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INDUCED PRESSURES AND SHOCK SHAPES ON 

BLUNT CONES I N  "YFERSONIC FLOW 

By Richard D. Wagner, Jr., and Ralph Watson 

SUMMARY A 

Numerical solutions and experimental pressure d is t r ibu t ions  have been 
studied with t h e  intent ion of evaluating proposed extensions t o  the  case of blunt  
cones of the blast-wave correlat ion of induced pressures. The numerical inviscid 
solutions obtained by charac te r i s t ics  theory do, with some success, correlate  i n  
terms of what may be considered a s  modified blast-wave parameters. The correla- 
t i o n  of experimental pressures, though not as  successful as t h a t  fo r  the inviscid 
numerical solutions,  i s  reasonably good. A secondary study of Reynolds number 
e f f e c t s  ind ica tes  t ha t  t h e  poorer correlation of t he  experimental pressures i s  
due, i n  pa r t ,  t o  viscous e f fec ts .  

The experimental shock shapes are a l so  obtained and found t o  give a good 
correlat ion f o r  small cone angles i n  terms of blast-wave-type parameters, but  t he  
correlat ion de te r iora tes  f o r  cone semivertex angles near 20° and above. Much of 
t he  success here i s ,  however, implied by previous blast-wave correlat ions of 
shock shapes on blunt cylinders together with t h e  l imited independence of a f t e r -  
body geometry i n  the  shock shape. 

INTRODUC!I'ION 

Recent t heo re t i ca l  analyses have indicated t h a t  through an appropriate modi- 
f i ca t ion  the  blast-wave parameters may be  extended t o  the  correlat ion of induced 
pressures on blunt cones and wedges. (See refs .  1 t o  3 . )  
analysis  of exact inviscid pressures on blunt p l a t e s  with incidence conf ims  the  
extension f o r  the  two-dimensional problem by a successful correlat ion of surface 
pressures with modified blast-wave parameters. For the  blunt cone, the  proposed 
extensions have only recent ly  begun t o  be scrutinized. 

I n  reference 4, an 

I n  the  present paper an ana ly t ica l  and experimental study of the induced 
pressures and shock shapes of blunt cones i s  presented. The ana ly t ica l  study 
cons is t s  of an examination of proposed induced-pressure correlat ions of exact 
solutions f o r  blunt cones by blast-wave-type parameters. The experimental study 
w a s  conducted i n  t h e  Langley 22-inch helium tunnel. Pressure d is t r ibu t ion  and 
shock shapes on six conical afterbodies,  having semivertex angles of 2O, bo, 6 O ,  

loo, 20°, and 30°, were obtained at a free-stream Mach number of 19.4 and with 
d i f f e ren t  degrees of nose t i p  bluntness. 
a secondary study of the  dependence of induced pressure upon Reynolds number. 

Included i n  the experimental program i s  



SYMBOLS 

CD,n nose drag coeff ic ient  

pressure coeff ic ient ,  L ( 2  - 1) 
Y K ~  pm 

aftercone base diameter (sketch a) 

forecone base diameter (sketch a) 

aftercone length (sketch a) 

free-stream Mach number 

s t a t i c  pressure 

free-stream s t a t i c  pressure 

free-stream Reynolds number based on 

model axial coordinate measured from nose t i p  

model axial coordinate measured from forecone- 

shock displacement from axis of symmetry 

r a t i o  of spec i f ic  heats  

aftercone semivertex angle (sketch a) 

forecone semivertex angle (sketch a) 

% 

ftercone junction 

APPARATUS AND TEST CONDITIONS 

Tunnel 

The experimental pa r t  of the  present invest igat ion was conducted i n  t h e  
Langley 22-inch helium tunnel. 
found i n  reference 5 ,  i s  an intermit tent  closed-cycle f a c i l i t y  operating i n  the  
stagnation pressure range from about 300 t o  3,000 ps ig  at ambient temperature. 
For t h e  present tests, a contoured nozzle, designed t o  y ie ld  a uniform test-  
section Mach number, was used. Even though the  longi tudinal  Mach number gradient 
i n  the  t e s t  section of t h i s  nozzle i s  negl igibly s m a l l ,  a s l i gh t  var ia t ion of 
Mach number with stagnation pressure i s  observed. I n  most cases the  tes ts  were 
conducted a t  a stagnation pressure of 1,000 ps ig  with a free-stream Mach number 

T h i s  tunnel,  a short  descr ipt ion of which may be 
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of 19.4 a t  the model nose location. 
e f f ec t s ,  the free-stream Mach number var ia t ion  between tests at  d i f f e ren t  stag- 
nation pressures was 18.9 5 M, 5 19.4 with the corresponding Reynolds number var- 
i a t i o n  of 0.0464 X lo6 5 Rd,a, 5 0.149 X lo6. 

I n  a secondary study of Reynolds number 

Models 

The models used consisted of s i x  conical afterbodies,  each t e s t ed  with three 
separate nose t i p s  of d i f f e ren t  degrees of bluntness. The six cones ( re fer red  t o  
herein as the  aftercones) had semivertex angles of 2O, bo, 60, loo, 20°, and 30'. 
The nose t i p s  chosen ( re fer red  t o  as the forecones) had semivertex angles of goo, 
Go, and 30°; t he  nose drag coef f ic ien ts  of the three  forecones, obtained by the  
modified Newtonian theory and cone theory, are approximately 1.76, 1.16, and 
0.56, respect ively . 

The construction of t he  basic  configuration i s  shown i n  sketch a. The over- 
a l l  dimensions of the  d i f f e ren t  models a re  a s  follows: 

2 
4 
6 

10 
20 
30 - 

15.00 
15.00 
15.00 
9.40 
3.75 
2.63 

1.42 
2.47 
3.53 
3.98 
3.11 
3.41 

40.00 
40.00 
40.00 
25.10 
10.00 

7.02 
Sketch a. 

The forecones were removable so t h a t  each aftercone could be t e s t ed  with each of 
the  three  forecone t i p s .  
pressure o r i f i c e s  located a t  t h e  posi t ions given i n  t ab le  I. The pressure gages 
and test  techniques described i n  reference 5 were used i n  the  present tests. 

Each aftercone was instrumented with 0.060-inch-diameter 

TABU I.- ORIFICE LOCATIONS 

r 
s, = 2 O  

9-72 
13.00 
17.00 
20.00 
24.80 
3 - 7 0  
35.00 

s, = 4" 

0.96 
1-97 
2-97 

5.96 
7.96 
9.93 

12.90 
1 6 . 9  
19-90 
24.90 
29.90 
34 .9  

f : 2 
0.89 
1.90 
2.88 
3.85 
4.88 
5 . 9  
7.87 
9.86 

12.80 
16.80 
19.80 

27.00 
34-70 

24.70 

for - 
s, = 100 

0.84 
1.80 
2.78 
3.75 
4.76 
5.70 
7.64 
9.59 

12.50 
16.40 
19.W 
21.90 

6b = 200 

0.39 
.58 
.97 

1.41 
1.97 
2.52 
2-97 
3- 52 
4.53 
5.52 
7-03 
8.29 

S, = 30' 

0.40 
.60 
.81 

1.02 
1.41 
1.80 
2.41 
3-25 
4.01 
4.99 

3 



RESULTS 

Numerical Solutions 

Exact inviscid pressure d is t r ibu t ions  were obtained f o r  configurations having 
aftercones with semivertex angles ranging from 2' t o  20' and having d i f f e ren t  
degrees of nose t i p  bluntness. 
The configurations studied are 
shown i n  sketch b. I n  most 
cases the nose t i p s  chosen 
were forecones, a s  with the  
models of t he  experimental 
program, with semivertex 
angles of 4 6 O ,  30°, and 20' 

but  some calculations were 
made f o r  a spherical  nose t i p  
capped by  a near sonic cone 
(CD,n Y 0.8). Inasmuch as the 
e n t i r e  flow f i e l d s  were super- 
sonic w i t h  these nose t i p s ,  
the  axisymmetric, ro t a t iona l  
charac te r i s t ics  method of ref-  
erence 6 could be used. The 
calculations were made on the  
IBM 704 electronic  data  proc- 
essing machine and employed 
the program developed f o r  the  
study reported i n  reference 7. 
and a i r  ( y  = 7 / 5 ) .  
near 20; however, some r e s u l t s  were obtained a t  free-stream Mach numbers near 
10 and 40. 

./- - 

= 1.16, O.$, and 0.25), ( CD,n 

Sketch b. 

Calculations were made f o r  both helium (7 = 5 / 3 )  
Most of the  r e s u l t s  were obtained a t  free-stream Mach numbers 

I n  order t o  i l l u s t r a t e  t h e  e s sen t i a l  features  of t he  pressure d is t r ibu t ion  
over t h e  blunt cone, some r e s u l t s  f o r  
i n  f igure 1. 
s t a t i c  pressure t o  free-stream s t a t i c  pressure p lo t ted  against  the  nondimensional 
a x i a l  distance xn/dn. 
cone angles display the common feature  of a pressure decay region i n  which an 
overexpansion occurs and i s  followed by a recompression. 
sures fa r  downstream should asymptotically approach the  sharp-cone pressure 
values indicated i n  the figure. 

y = 5/3 and the 30° forecone are shown 
The pressure d is t r ibu t ions  are i n  the  form of a r a t i o  of surface 

The d i s t r ibu t ions  f o r  the  models with t h e  various after- 

Obviously, t he  pres- 

These values are as given by sharp-cone theory. 

Recent theore t ica l  analyses employing hypersonic slender-body theory o r  
blast-wave analogies have produced blast-wave-type parameters f o r  cor re la t ing  
induced pressures and shock shapes on slender blunt cones. (See refs. 1 t o  3.) 
I n  t h e  prediction of  inviscid flow-field propert ies  on blunt cylinders,  the con- 
cepts given by the blast-wave theory are qui te  useful. (See ref. 7 ,  fo r  example.) 
Although the induced pressures on blunt cylinders may be s igni f icant ly  influenced 
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by f i n i t e  v i scos i ty  (see ref. 5 ) ,  inviscid solutions usually serve as s t a r t i ng  
points  f o r  complete analysis  of f low f i e lds .  For th i s  reason, among others,  the  
evaluation of proposed blast-wave extensions t o  blunt  cones by examination of 
the  inviscid n ine r i ca l  solutions would be o f  considerable in t e re s t .  

The r e s u l t s  of the  numerical calculations f o r  y = 5/3 are shown i n  f i g -  
ure 2. (The calculat ions f o r  y = 7/5 are  discussed subsequently.) The charac- 
t e r i s t i c s  solutions (represented by the symbols) are presented i n  terms of the  
correlat ing parameters developed by Cheng i n  reference 2. The sharp-cone values 
f o r  &, = 20 are a l so  indicated i n  the figure,  along with Cheng's t heo re t i ca l  
correlat ion curve. A s  i n  t h e  blast-wave theory, the correlat ion should not apply 
i n  the immediate v i c i n i t y  of the nose. With t h i s  exception, the  data f a l l  within 
a band. In the  region of the overexpansion, the charac te r i s t ics  solutions give 
higher values of induced pressures than Cheng's theory and the correlat ion becomes 
poorer than i n  the  region of t he  pressure decay. I n  the  analysis  of reference 2, 
the  form of the Newtonian-plus-centrifugal-force pressure dependence adopted 
implies large pressure r a t i o s  which would l i m i t  the  r e su l t s  accordingly. For the  
small-angle aftercone, a downstream l i m i t  f o r  good correlat ion should then be 
expected. T h i s  i s  apparent i n  the  seemingly poor correlat ion i n  the region of 
t h e  overexpansion, and i s  fur ther  i l l u s t r a t e d  by the  unsuccessful correlat ion of 
the  sharp-cone pressures f o r  s m a l l  cone angles. 

I 

, 
1 

Mirels and Thornton (ref. 3) have also considered the problem of blunted, 
slender cones and a r r ive  a t  correlat ing parameters s i m i l a r  t o  those of Cheng; 

the difference being tha t  they f ind  - 'p ( instead of L) should be used 
Y%2sb2 pa 

- 2  
6b2 

91 xn a s  the  correlat ing parameter against  the  axial-distance parameter - -. 
JCD,n 

Obviously, t he  parameters of references 2 and 3 are  e s sen t i a l ly  the same f o r  
large r a t i o s  of l o c a l  t o  free-stream s t a t i c  pressure, but the more unifying 
e f f ec t  of the  parameters used by Mirels and Thornton i s  demonstrated i n  f ig -  
ure 3(a) wherein the  charac te r i s t ics  solutions are again shown but i n  terms of 
the  parameters of reference 3. 
i n  the  area of the overexpmsion and including the  sharp-cone pressures, i s  some- 
what improved when expressed i n  terms of the pressure-coefficient parameter. The 
theo re t i ca l  d i s t r ibu t ion  of Mirels and Thornton, shown also in  figure 3(a),  i s  

r e s t r i c t e d  t o  s m a l l  values of the distance parameter - b2 X* - (as pointed out 

i n  ref. 3 )  and l i e s  roughly within the  correlat ion band. 

The correlation f o r  a l l  configurations studied, 

& 
The cha rac t e r i s t i c s  solutions are again correlated i n  f igure 3(b).  I n  t h i s  

f igure,  the  a x i a l  dis tance measured from the forecone-aftercone junction ( see  
xs i n  sketch b)  has been used i n  the  distance parameter. A s l igh t  improvement 
occurs at the  beginning and i n  the  area of the  overexpansion. 
of the distance parameter, small and large,  no fur ther  improvement resu l t s .  
the  most pa r t ,  t h e  choice of xs or xn would be a matter of convenience. It 
i s  noteworthy t h a t  t h e  induced pressures a t  

For extreme values 
For 

M, = 20 on the  2' aftercone do not 
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show everywhere good correlat ion with the other aftercone induced pressures. 
This resu l t  i s  consistent with t h e  r e s u l t s  of Baradell and B e r t r a m  who consider 
the  corresponding two-dimensional problem i n  reference 4. 
the  parameters suggested i n  reference 1, which are e s sen t i a l ly  the  same as those 
of reference 3, tha t  t he  pressures on blunt wedges did not cor re la te  w e l l  below a 
wedge angle of about 3'. 

They found by using 

The r e su l t s  obtained fo r  7 = 7/5 a re  shown i n  f igure  4. ( I n  many cases 
numerical d i f f i c u l t i e s  were introduced by the  convergence of charac te r i s t ics  
l i n e s  reflected from the aftercone surface i n  a compression region occurring 
downstream of the forecone-aftercone junction, as, f o r  example, f o r  
i n  figure 1. 
which the calculat ions could be made and occurred in  the  calculat ions f o r  both 
spec i f ic  heat r a t io s ,  but especial ly  f o r  
on the  data represents t he  correlated r e su l t s  for 
cone angle range ( tha t  is ,  
parameter, the  regions of good correlat ion of the  charac te r i s t ics  solutions cal-  
culated fo r  helium and a i r  e s sen t i a l ly  overlap. 
difference i n  the sharp-cone values. It would seem t h a t  i n  t h i s  form of correla- 
t ion ,  the e f f ec t s  of 7 are reduced and are nearly insignif icant  i n  a la rge  por- 
t i o n  of the induced-pressure region. 

Oo 5 S, 5 6' 
These d i f f i c u l t i e s  resul ted i n  a l i m i t  t o  the  extent downstream t o  

7 = 7/5.) The shaded area superimposed 
y = 5/3 f o r  the  same a f t e r -  

% = 2' t o  loo). For small values of the  distance 

I n  addition, there  i s  l i t t l e  

Experimental Results 

The experimental pressure d is t r ibu t ions  obtained on the  models a t  M, = 19.4 
and Rd,= = 0.149 x lo6 are p lo t ted  i n  f igure  5. 
far enough downstream i n  most cases t o  obtain the  asymptotic pressures, i n  a l l  
cases except f o r  the  2O and 4O aftercones,  t he  data have the common feature  (as 
i n  the  numerical solution of f i g .  1) of an overexpansion followed by a recompres- 
sion t o  near sharp-cone pressure. The downstream extent t o  which t i p  bluntness 
a f f e c t s  the pressure d i s t r ibu t ion  i s  seen t o  diminish with increasing aftercone 
angle. 
(6n = 90° and 30°, respect ively) ,  reveals t he  blast-wave-type feature of a more 
rapid pressure decay with higher nose drag coef f ic ien t .  

Though the  data do not extend 

A comparison of t h e  two extreme cases of bluntness, C D , ~  = 1.76 and 0.56 

The downstream pressures on the  2' aftercone seem t o  indicate  t h e  presence 
of viscous e f f ec t s  when compared with the  inviscid sharp-cone pressures. 
i l l u s t r a t i o n  of the  presence of viscous e f f e c t s  and an indication of t h e i r  magni- 
tude i s  shown i n  f igure 6 by a comparison of t h e  experimental data with the  char- 
a c t e r i s t i c s  solutions with a fixed 30° forecone. The viscous e f f e c t s  a re  qui te  
la rge  over the induced-pressure region f o r  the  s m a l l  aftercone angles but appear 
of diminishing importance as the aftercone angle increases. The overexpansions 
indicated by the  exact inviscid solut ions are not seen i n  t h e  data f o r  t he  2' 
and 4' aftercones and are reduced f o r  the  l a rge r  cone angles. 

An 

I n  view of the preceding r e su l t s ,  a secondary study of t he  e f f ec t s  of 
Reynolds number var ia t ion w a s  performed on the  4' and 60 aftercones with the  90' 
and 30' forecone t i p s .  I n  order t o  cover a wider range of Reynolds number, 
based on forecone base diameter, t h e  removable nose t i p s  were interchanged with 
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extensions having forecone base diameter (3/16 inch) smaller than t h a t  of t he  
basic  models, and tes ts  were also made at d i f fe ren t  stagnation pressures. 

I n  reference t o  the  90' forecones (see top of f i g .  7), above a Reynolds num- 
ber  of about 0.0742 x lo6 f o r  both the  4' aftercone a;;d 6' aftercone, the  r e su l t s  
are  consistent with the  r e su l t s  of reference 5. I n  reference 5 ,  it w a s  found 
during the  study of the  Reynolds number e f fec ts  on induced pressures of cyl indri-  
c a l b o d i e s  t h a t  f o r  high-nose-drag shapes the  viscous e f f e c t s  were unimportant i n  
the  area of t he  pressure decay. (The values for Rd,c,, i n  r e f .  5 ranged from 
0.088 x 106 t o  2.65 x lo6.) Nevertheless, the data  shown i n  f igure 7 f o r  the 
lowest value of Rd indicate  a rapid t rans i t ion  t o  a region where viscous 
e f f ec t s  may become predominant. 
e f f e c t s  and warrants fur ther  investigation. 

,= 
This i s  an in te res t ing  aspect of the  observed 

Quite d i f f e ren t  results are obtained on the  aftercones with 30' forecone 
t i p s .  A s  shown i n  figure 7, Reynolds number var ia t ion produces appreciable 
e f f e c t s  over t he  e n t i r e  aftercone and these e f f ec t s  s teadi ly  increase with 
decreasing Rd,,,. Again, t h i s  r e su l t  i s  i n  l i n e  with the r e s u l t s  of reference 5 
wherein, f o r  low-nose-drag cy l indr ica l  bodies, viscous e f f e c t s  were found impor- 
t a n t  over the  e n t i r e  induced-pressure region. 

I n  view of t h e  preceding discussion, i t  would appear t h a t  correlat ion of  
experimental da t a  on blunt cones should take in to  consideration the  e f f e c t s  of 
Reynolds number. I n  f igure  8 are shown the  data on blunt cones obtained at t h e  
highest Reynolds number presented i n  terms of the  parameters suggested by Mirels 
and Thornton (ref.  3 ) ,  employing the axial distance from the  forecone-aftercone 
junction i n  t h e  distance parameter. The data a r e  shown f o r  body s t a t ions  greater  
than about Xs/dn = 2. Although the  correlat ion i s  not as good as t h a t  f o r  the 
charac te r i s t ics  solutions,  the  experimental data do cor re la te  in to  a band. Notice 
t h a t  i n  reference t o  the  theore t ica l  correlation curve of reference 3 ,  the  exper- 
imental cor re la t ion  band i s  higher than the  charac te r i s t ics  band of correlat ion 
i n  f igure 3(b). 
t h e  viscous e f f e c t s  mentioned previously and fu r the r  point out t h e i r  importance. 

This observation and the la rger  bandwidth are indicat ive of 

A recent publ icat ion has been ca l led  t o  t h e  authors '  a t ten t ion  i n  which a 
correlat ion of experimental Ind-dced pressures on hemispherically blunted cones, 
obtained i n  an arc-driven nitrogen tunnel, i s  reported.  (See r e f .  8.) The data 

r4 

c;P of reference 8 are correlated i n  terms of the parameters - and 
- 2sb2 

~ b '  X n r + 1  

JcD,n 
- -1;. The distance parameter i s  t h a t  developed by Cheng i n  reference 2 

( i n  f i g .  2 of t he  present paper, the fac tor  containing 
sure parameter i s  suggested i n  reference 8 as a modification of Cheng's pressure 
parameter. 
higher than the  present charac te r i s t ics  correlation, f o r  
mately t h e  same aftercone-angle range, indicates  a possible Reynolds number 
e f fec t  on t h e  correlat ion as i n  the present experimental data.  

i s  deleted);  t h e  pres- 

The f a c t  t h a t  the  correlat ion band of t he  data  of reference 8 i s  
y = 7/5 and approxi- 
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I n  an e f f o r t  t o  examine t h e  p o s s i b i l i t i e s  of cor re la t ing  the  shock shapes of 
blunt  cones, t h e  shock shapes were measured from the  schl ieren photographs shown 
i n  f igure 9. The shock shapes are p lo t ted  i n  f igure  10 i n  terms of the  corre- 
l a t i n g  parameters developed i n  references 2 and 3. (The data a re  shown only f o r  
xs/dn > 1.5 
apply too near the  nose.) These parameters are e s s e n t i a l l y  the same i n  re fer -  
ences 2 and 3, t he  difference being t h a t  reference 2 includes a function of y 
t o  account f o r  i t s  var ia t ion .  The shock shapes fo r  the  blunt  cones with s m a l l  

s ince,  as for t h e  induced pressures, t h e  cor re la t ion  should not 

Y and qG d, aftercone angle cor re la te  w e l l  i n  terms of the  parameters 

z; though f o r  t h e  20' and 30' aftercones, t he  cor re la t ion  i s  not qu i t e  as %* 
JCD,n dn 
good. 
are a l so  given i n  the  f igure and are correlated with f a i r  success by these 
parameters. 

The sharp-cone shocks which are the  asymptotes of the blunt-cone shocks 

The theo re t i ca l  cor re la t ion  curves of references 2 and 3 are a l s o  given i n  
f igure  10. Both Cheng's theory and t h a t  of Mirels and Thornton underestimate the  
shock displacement. O f  course, the  shock shape of a b lunt  cone should be ident i -  
c a l  t o  the  corresponding b lunt  cyl inder  up t o  a point downstream where the a f t e r -  
body geometry would influence t h e  shock. This feature i s  exhibited by the  near 
0.3 power l a w  var ia t ion  observed i n  t h e  experimental data and i n  both theo re t i -  

xn < 1.0 i n  f igu re  10. This va r i a t ion  i s  typ ica l  c a l  cor re la t ions  f o r  - - sb 
JCD,n 

of t h e  shocks on blunt cyl inders .  The t r a n s i t i o n  t o  the  conical shock occurs 

h2 xn 

JCD,n dn 
around - - = 1.0. Cheng's theory shows t h e  t r a n s i t i o n ,  but Mirels and 

Thornton's, which (as they mention) i s  r e s t r i c t e d  t o  s m a l l  values of t h e  d i s -  
tance parameter, does not.  

CONCLUSIONS 

On the basis of t he  r e s u l t s  of t h e  present invest igat ion,  t h e  following con- 
c lusions may be made: 

1. Inviscid numerical so lu t ions  f o r  t h e  induced pressures on blunted - cones 

~ b '  xn with may be correlated by the  blast-wave-type parameters cp - and - - 
6b2 4% 

fa i r  success. 
t he  induced pressures f o r  air  and helium seem t o  be s m a l l  over a l a rge  portion of 
t h e  region. 

I n  addition, i n  t h i s  form of cor re la t ion ,  t h e  d i f fe rences  between 

2. The r e s u l t s  of measurements of experimental induced pressures on blunt  
cones indicate  t h a t  Reynolds number va r i a t ions  may s ign i f i can t ly  a f f ec t  t h e  

8 



induced pressures.  Though t h e  scope of the study of Reynolds number e f f e c t s  w a s  
not extensive enough t o  define these e f f e c t s  c lear ly ,  the  indicat ions a re  t h a t  a t  
su f f i c i en t ly  high Reynolds number the e f f e c t s  are s m a l l  f o r  t h e  high-nose-drag 
blunt cones but t h a t  there  i s  a rapid t rans i t ion  t o  a region of large viscous 
e f f e c t s  at low Reynolds numbers. The e f f ec t s  Were s igni f icant  f o r  low-nose-drag 
blunt cones throughout the  Reynolds number range of t he  tests.  

3. Experimental pressures a t  the  highest t e s t  Reynolds number were found t o  
cor re la te  i n to  a band i n  terms of t he  preceding blast-wave-type parameters. The 
cor re la t ion  w a s  not as successfbl as f o r  the  inviscid numerical solutions and 
t h i s  poor cor re la t ion  i s  a t t r i bu ted  t o  the viscous e f f ec t s .  

4. The experimental shock shapes show good cor re la t ion  i n  terms of t he  param- - 

e t e r s  $/E$ and - Xn; - though f o r  the 20' and 30' aftercones,  t he  cor- 

r e l a t ion  i s  not qu i te  as good. 
t h e  success of t h e  correlat ion i s  due t o  independence (of t h e  forward pa r t  of the  
shock) of afterbody geometry and represents merely a fur ther  confirmation of the  
blast-wave cor re la t ion  of shock shapes. 

For t he  blunt cones with s m a l l  aftercone angle, 

(The symbols used i n  the blast-wave-type parameters a r e  defined as follows: 
Cp, pressure coef f ic ien t ;  $, aftercone semivertex angle; CDYn, nose drag coef- 
f i c i e n t ;  %, axial dis tance from nose t i p ;  d,, forecone base diameter; and 
shock displacement from axis of symmetry.) 

y, 

Langley Research Center , 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  October 23, 1963. 
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Figure 5. - Continued . 
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